
FHHOP: A Factored Hybrid Heuristic Online Planning
Algorithm for Large POMDPs

Zongzhang Zhang
School of Computer Science and Technology

University of Science and Technology of China
Hefei, Anhui 230027 China
zzz@mail.ustc.edu.cn

Xiaoping Chen
School of Computer Science and Technology

University of Science and Technology of China
Hefei, Anhui 230027 China
xpchen@ustc.edu.cn

Abstract

Planning in partially observable Markov decision
processes (POMDPs) remains a challenging
topic in the artificial intelligence community,
in spite of recent impressive progress in
approximation techniques. Previous research
has indicated that online planning approaches
are promising in handling large-scale POMDP
domains efficiently as they make decisions “on
demand” instead of proactively for the entire
state space. We present a Factored Hybrid
Heuristic Online Planning (FHHOP) algorithm
for large POMDPs. FHHOP gets its power
by combining a novel hybrid heuristic search
strategy with a recently developed factored state
representation. On several benchmark problems,
FHHOP substantially outperformed state-of-the-
art online heuristic search approaches in terms of
both scalability and quality.

1 Introduction

Partially observable Markov decision processes (POMDPs)
have been widely recognized as a powerful probabilistic
model for planning and control problems in partially
observable stochastic domains (Kaelbling et al. 1998).
Solving POMDP problems exactly can be impossible due
to their computational complexity (Madani et al. 1999).
In the past decade, researchers have made impressive
progress in designing approximate algorithms (Pineau et
al. 2006; Kurniawati et al. 2008; Ross et al. 2008a) and
have successfully applied them to various realistic robotic
tasks (Hoey et al. 2007; Hsu et al. 2008).

Planning algorithms can be categorized as offline planning
algorithms and online planning algorithms depending on
the ways of solving problems. Offline approaches separate
the policy-construction phase and the policy-execution
phase. They devote significant pre-processing time to

generate a policy over the whole belief space in the
policy-construction phase, then use the resulting policy
to make decisions during the policy-execution phase.
Offline approaches can be beneficial for repeated POMDP
planning tasks as the pre-processing time can be amortized
over the various runs. In contrast, online approaches
are a viable alternative for urgent or one-off POMDP
planning tasks. They do not allocate significant time
to pre-processing, but alternate between a time-limited
policy-construction step for the current state and a policy-
execution step (Ross et al. 2008a). Instead of finding
policies that generalize to all possible situations, they
focus on computing good local policies at each policy-
construction step, and therefore can potentially produce
a sequence of actions with high reward while spending
much less overall time for policy construction and policy
execution compared to offline algorithms.

In this paper, we aim to accelerate online POMDP planning
algorithms by taking advantage of a more efficient heuristic
search strategy and a factored state representation.

Our work on heuristics originates from the insight that
lower bounds on the optimal value function have not been
well exploited in current online algorithms. Current online
algorithms maintain both the lower and upper bounds as
a heuristic to find good policies. One key problem that
determines the overall performance of current approaches
is how to approximate the optimal policy according to the
lower and upper bounds. In previous work (Ross et al.
2008a), the upper bound was usually more popular than
the lower bound in the calculation. The search toward the
action with the highest upper bound guarantees that an ε-
optimal action can be found within finite time theoretically.
In contrast, the lower bound is more difficult to be exploited
since it can easily trap search into local optima. For
example, the result of always exploring toward the action
branch with the highest lower bound only makes us believe
that this action branch is optimal, although it tends not to
be so. However, the lower bound can guarantee the quality
of policy, which is an advantage that the upper bound does
not have. Thus, online algorithms typically return the best

Figure 1: AEMS2’s computational profile on several
benchmark problems. The plot shows, for example, that on
RockSample 7 8 AEMS2 spends 54%, 27% and 16% of
its running time in computing new belief states, P (z|b, a),
and values over belief states given a value function,
respectively. See text for further explanations.

action with the highest lower bound but not with the highest
upper bound. In this paper, we discuss how to take full
advantage of both the lower and upper bound in a novel
hybrid way and avoid their disadvantages. The role of the
lower bound in our heuristic method is to guide the search
toward a set of promising policies whose quality may be
better than the current best policy.

Our work on factorization was inspired by profiling data
on several typical benchmark problems like those in
Figure 1. Ignoring the details of the tasks for the time
being, we can see that in all cases the anytime error
minimization search 2 (AEMS2) algorithm, one of the
most efficient online heuristic search algorithms (Ross
and Chaib-draa 2007; Ross et al. 2008a), spends more
than 95% of its overall running time in computing:
(1) new belief states; (2) P (z|b, a), the probabilities
of observing z after taking action a at belief state b;
and (3) values over belief states given a value function.
These dramatic observations drive us to decrease overall
computation time by reducing the time on these three
operations. We show theoretically and empirically that
it is possible to do so by taking advantage of the mixed
observability MDP (MOMDP) representation (Ong et al.
2010). The MOMDP representation can be considered
as an instance of a dynamic Bayesian network (DBN). It
exploits mixed observability where some state variables are
always observed and others are hidden to reduce the time
complexity of state related operations.

We refer to our new algorithm based on the above two
insights as Factored Hybrid Heuristic Online Planning

(FHHOP). Experimental results reveal that FHHOP
substantially outperformed the AEMS2 algorithm on all
test problems. Especially, on some well-known benchmark
problems, FHHOP has achieved more than an order of
magnitude improvement in terms of runtime.

The remainder of the paper is organized as follows.
Section 2 provides an overview of the POMDP model,
online algorithms and the MOMDP representation.
Section 3 describes the details in the FHHOP algorithm,
which is our key contribution. Section 4 describes a set of
experiments showing the efficacy of the FHHOP algorithm
in terms of both runtime and solution quality. We conclude
and discuss future work in Section 5.

2 Background and Related Work

In this section, we briefly introduce the POMDP model,
online algorithms, and the MOMDP representation.

2.1 POMDP Model

POMDPs provide a very powerful mathematical model
for an agent’s decision making in partially observable
domains. A discrete and discounted POMDP model can
be formally defined by a tuple (S,A,Z, T,Ω, R, γ). In
the tuple, S, A and Z are the finite and discrete state
space, action space and observation space, respectively,
T (s, a, s′) : S × A × S → [0, 1] is the state transition
function (P (s′|s, a)), Ω(a, s′, z) : A × S × Z → [0, 1]
is the observation function (P (z|a, s′)), R(s, a) : S ×
A → R is the reward function, and γ ∈ (0, 1) is
the discount factor on the summed sequence of rewards.
Because the agent’s current state is not fully observable,
the agent could have to rely on the complete history of
past actions and observations to select a desirable current
action. In the context of decision making, the belief state
b is a sufficient statistic for the history of actions and
observations (Smallwood and Sondik 1973). A belief state
b is a discrete probability distribution over the state space,
whose element b(s) gives the probability that the agent’s
state is s. Let B be the space of all possible belief states
and b0 be the agent’s initial belief state. Thus, B is an |S|-
dimensional space, where |S| is the number of states. In a
so-called flat POMDP, all operations on beliefs and value
functions are performed at the level of |S|-dimensional
belief states.

When the agent takes action a at a belief state b and receives
observation z, it will arrive at a new belief state ba,z:

ba,z(s′) =
1

η
Ω(a, s′, z)

∑
s∈S

T (s, a, s′)b(s), (1)

where η is a normalizing constant (Kaelbling et al. 1998).
The constant is the probability of receiving z after the agent

takes a at b and can be specified as:

P (z|b, a) =
∑
s′∈S

Ω(a, s′, z)
∑
s∈S

T (s, a, s′)b(s). (2)

A key goal in solving POMDPs is to find an optimal
policy π∗ that maximizes the expected discounted reward
V π(b0) = E[

∑∞
t=0 γ

tR(st, at)|b0, π], where π denotes a
policy that maps from belief states to actions, and st and at
are the agent’s state and action at time step t, respectively.
The maximal expected discounted reward starting from any
initial belief state in the whole belief space is captured by
the optimal value function V ∗, which can be defined via
the fixed point of Bellman’s equation (Bellman 1957):

V ∗(b) = max
a∈A

Q∗(b, a), (3)

where Q∗(b, a) = R(b, a) + γ
∑
z∈Z P (z|b, a)V ∗(ba,z)

and R(b, a) =
∑
s∈S R(s, a)b(s). The function V ∗ can be

approximated infinitely closely by a piecewise linear and
convex function:

V (b) = max
α∈Γ

(α · b) = max
α∈Γ

∑
s∈S

α(s)b(s), (4)

where Γ is a finite set of |S|-dimensional hyperplanes,
called α-vectors, over B (Smallwood and Sondik 1973).
The piecewise linear and convex property makes several
exact and approximate value iteration algorithms feasible
for solving POMDPs (Kaelbling et al. 1998; Kurniawati
et al. 2008). Once V ∗ has been identified, computing
the optimal policy π∗ is a straightforward application of
π∗(b) = argmaxa∈AQ

∗(b, a).

2.2 Approximate Online Algorithms

Online POMDP algorithms can be classified into three
categories: branch-and-bound pruning, Monte-Carlo
sampling and heuristic search (Ross et al. 2008a). In
this paper, we only focus on one category, heuristic search
online algorithms. The central idea in heuristic search
online algorithms is to maintain lower and upper bounds
on the value function, V (b) ≤ V ∗(b) ≤ V̄ (b), and to
iteratively improve these bounds at the current belief state
bc by expanding an AND/OR tree of reachable belief states
from bc. We denote Q(b, a) and Q̄(b, a), respectively, as
the lower and upper bounds over Q∗(b, a). Each OR-node
in the tree represents a belief state and each AND-node
represents an action choice from the belief state (node)
above it, given the tree is drawn growing downwards. By
abuse of notation, we will use b to represent a belief node
in the tree and its associated belief state.

Algorithm 1 is a generic POMDP solver. It accepts three
parameters: b0, τ and ε, where b0 is the initial belief
state, τ is a bound on computation time allowed per policy-
construction step, and ε is the desired precision on V (bc).

Algorithm 1: Generic Online POMDP Solver

Function OnlinePOMDPAlgorithm(b0,τ ,ε)
1: Initialize the bounds by offline algorithms;
2: bc = b0;
3: Build an AND/OR tree to contain bc at the root;
4: while bc is not a goal state
5: a =Search(bc,τ ,ε);
6: Take action a and receive a new observation z;
7: bc = ba,zc ;
8: Update the tree so that bc is the new root;
9: end while

Algorithm 2: Policy Construction

Function Search(bc,τ ,ε)
1: StartTimer();
2: while ElapsedTime() ≤ τ and V̄ (bc)− V (bc) > ε
3: b∗ =ChooseBestNodetoExpand();
4: Expand(b∗);
5: UpdateAncestors(b∗);
6: end while
7: return argmaxa′∈AQ(bc, a

′);

Online algorithms use this tree to alternate between policy
construction and policy execution. The policy execution
procedure (see Lines 6–8 in Algorithm 1) is consistent
across all online algorithms.

Algorithm 2 is a general online policy-construction
function. The ChooseBestNodetoExpand() procedure
uses efficient heuristic search strategies to select a useful
belief node to expand among the leaf nodes. The
Expand() procedure expands a belief node, improving its
lower and upper bound over V ∗ in the process. The
UpdateAncestors() procedure concentrates on updating
the bounds of a belief node’s ancestors. On Line 7 of
Algorithm 2, it returns the action branch at the root with
the highest lower bound ofQ(bc, a

′). We define the current
best policy πbest to be the policy of always selecting the
action πbest(b) = argmaxa′∈AQ(b, a′).

To better describe our work on heuristics, we first use
Figure 2 as an example to further illustrate how online
algorithms work. Suppose that bc+k is the leaf belief
node that ChooseBestNodetoExpand() returns. Let bc+k
be a leaf node that is reachable from the root belief
node bc by following a k-step action-observation sequence,
a0z1a1z2 . . . ak−1zk. After expanding bc+k, an improved
V (bc+k) and V̄ (bc+k) can be obtained. Furthermore, the
invocation of UpdateAncestors() results in the improved
bounds at all belief nodes and Q nodes along this path.
In other words, given that bc+k is reachable from bc by
following some policy π, the execution of Line 3–5 in
Algorithm 2 will lead to improved V π(bc) and V̄ π(bc),

Figure 2: A path from the root belief node bc to the leaf
belief node bc+k.

the lower and upper bounds on the expected discounted
reward generated by following π at bc. If V πbest(bc) in the
previous round is surpassed by the new improved V π(bc),
then a policy with higher lower bound will be found.

2.3 Heuristics in Current Online Algorithms

In current heuristic search online algorithms, each leaf
belief node has an associated heuristic value. The
invocation of ChooseBestNodetoExpand() returns the leaf
belief node with the maximal heuristic value. If an oracle
provides us with the optimal value function V ∗, a heuristic
function over a leaf node bc+k with good theoretical
guarantees can be defined as follows (Ross et al. 2008b):

H∗(bc+k) = e∗(bc+k)

k−1∏
t=0

ω∗(bc+t, at)ω(bc+t, at, zt+1),

(5)
where e∗(bc+k) = V ∗(bc+k) − V (bc+k),
ω(bc+t, at, zt+1) = γP (zt+1|bc+t, at), and

ω∗(bc+t, at) =

{
1 if at ∈ argmaxa′∈AQ

∗(bc+t, a
′),

0 otherwise.
(6)

In such a heuristic function, each quantity plays an
important role in expanding the leaf nodes: e∗(bc+k)
encourages exploration of leaf nodes with loose bounds,
ω∗(bc+t, at) focuses the exploration toward the leaf nodes
that are reachable from bc under the optimal policy,
and ω(bc+t, at, zt+1) guides the search toward belief
nodes that are likely to be encountered in the future.
Empirical results in prior work (Ross et al. 2008a) teach
us that ignoring some quantities in Equation 5 would
damage the overall performance of online approaches.
For example, the lack of ω(bc+t, at, zt+1) in the BI-
POMDP algorithm (Washington 1997) may explain its
poor performance on some POMDP problems with large
observation spaces.

However, the optimal policy or value function is not
available for constructing H∗. Thus, the finding of a
set of “promising” policies is one of the core issues for
improving the speed of online algorithms. The approach
of Satia and Lave (Satia and Lave 1973) assumes the set
of promising policies are all possible optimal policies. In

this approach, little heuristic information about V and V̄
is exploited to focus its search toward actions that look
promising, and therefore the approach of Satia and Lave
is not able to scale well to large-scale POMDPs. The
AEMS1 algorithm (Ross et al. 2008a) takes both V and
V̄ into account by favoring exploration of action branches
with high average values of Q(b, a) and Q̄(b, a). Such
an algorithm loses its competitive capability in large-scale
POMDP problems partially because its search strategy does
not use the highest lower or upper bound well. In contrast
to AEMS1, the BI-POMDP and AEMS2 algorithms use V̄
as an estimated substitute for V ∗. HU (bc+k) is the AEMS2
algorithm’s heuristic:

HU (bc+k) = e(bc+k)

k−1∏
t=0

ω(bc+t, at)ω(bc+t, at, zt+1),

(7)
where e(bc+k) = V̄ (bc+k)− V (bc+k) and

ω(bc+t, at) =

{
1 if at ∈ argmaxa′∈A Q̄(bc+t, a

′),
0 otherwise.

(8)
From the definition of ω(bc+t, at), we can see AEMS2
assumes that the action with the maximal upper bound is
in fact the optimal action. Such a definition, sometimes
called the IE-MAX heuristic (Smith and Simmons 2004),
leads AEMS2 to find an ε-optimal action within finite
time (Ross et al. 2008b). The action branch according to
the highest lower bound is deliberately ignored in AEMS2
simply because choosing leaf nodes under such an action
branch to expand could only cause its lower bound to rise,
and therefore, easily trap search in local optima. However,
Q(b, a) may be a very useful heuristic in finding a better
policy. A direct insight is that the action that Algorithm 1
returns is the action corresponding to the maximal Q(b, a)

but not the maximal Q̄(b, a). One of our contributions
is to suggest that using the lower bound could provide
improvements compared to the heuristics used in AEMS2.

2.4 MOMDPs

A MOMDP can be generally specified as a tuple
(X ,Y, A, Z, TX , TY ,Ω, R, γ), where X is the set of
fully observable state variables, Y is the set of partially
observable state variables, S = X × Y , TX (x, y, a, x′) :
X × Y × A × X → [0, 1] and TY(x, y, a, x′, y′) : X ×
Y × A × X × Y → [0, 1] are the two corresponding
probabilistic state-transition functions (P (x′|x, y, a) and
P (y′|x, y, a, x′)), Ω(a, x′, y′, z) : A×X×Y ×Z → [0, 1]
is the observation function (P (z|a, x′, y′)), R(x, y, a) :
X × Y × A → R is the reward function, and the
other quantities are the same as a POMDP model’s
elements. Since x is fully observable, a belief state b
on the underlying state s = (x, y) can be represented
as (x, bY(x)). Let BY be the belief space over Y ,
and BY(x) = {(x, bY(x))|bY(x) ∈ BY}, then B =

⋃
x∈X BY(x). Thus, computations involving updating

beliefs and value functions can be restricted to one of |Y|-
dimensional subspaces, BY(x). Please note that B has
|X ||Y| dimensions, while BY has only |Y| dimensions,
where |X | and |Y| are the number of fully and partially
observable state variables, respectively.

After taking a and receiving z from (x, bY(x)), a new belief
(xa,z, bY(xa,z)) results. The variable xa,z can be directly
inferred from z, and bY(xa,z) can be computed as follows:

bY(xa,z, y′) =
1

η
Ω(a, xa,z, y′, z)

∑
y∈Y

TXYbY(x, y), (9)

where TXY = TX (x, y, a, xa,z)TY(x, y, a, xa,z, y′) and η,
the probability of receiving z after taking a at (x, bY(x)) is

P (z|x, bY(x), a, xa,z) =∑
y′∈Y

Ω(a, xa,z, y′, z)
∑
y∈Y

TXYbY(x, y). (10)

For any given x, V ∗(x, bY(x)) can be accurately
approximated by a finite set of |Y|-dimensional vectors
ΓY(x) over BY(x):

V (x, bY(x)) = max
α∈ΓY(x)

(α · bY(x)). (11)

From the description of MOMDPs, we can see any
MDP can be written as a MOMDP and any POMDP
can be written as a MOMDP. That is because the MDP
states can reside in the fully observable part of the
MOMDP description and the POMDP states can reside
in the partially observable part of a MOMDP description.
Similarly, any MOMDP can be written as a POMDP by
treating all states as partially observable (Ong et al. 2010).

3 Factored Hybrid Heuristic Online
Planning

In this section, we describe the FHHOP algorithm in
detail. First, we construct a novel hybrid heuristic
strategy by combining a new heuristic function using the
lower bound with an existing heuristic function using the
upper bound to improve the heuristic search mechanism
in the ChooseBestNodetoExpand() procedure. Then, we
concentrate on the reason that the MOMDP representation
is useful to reduce the running time in the Expand() and
UpdateAncestors() procedures. Finally, we discuss the
convergence property of the FHHOP algorithm.

3.1 Constructing a Heuristic Function Using the
Lower Bound

As mentioned in the last paragraph of Section 2.2, to find a
better policy, we need to select a policy π and expand the

Figure 3: An example of action branches at b. AL = {a2},
AS = {a1, a4}, and current second-best action is a4. The
action branch a3 is not included in AS because Q̄(b, a3) is
smaller than Q(b, a2).

leaf belief nodes that are reachable from bc by following
the policy π. Our goal here is to use the lower bound as
a heuristic to select a set of promising policies so that the
exploration toward them will lead to find an even better
policy as quickly as possible. Our idea is to elicit a set
of policies π from all possible policies, whose V π(bc) are
close to V πbest(bc), according to the lower bound.

First, define ω1(b, a), a term that guides the exploration
toward belief nodes that are reachable from bc under the
current best policy, as follows:

ω1(b, a) =

{
1 if a ∈ argmaxa′∈AQ(b, a′),
0 otherwise.

(12)

Then, we consider the action branches at a single belief
node b. We assume AL = argmaxa′∈AQ(b, a′) and AS =

{a ∈ A \AL|Q̄(b, a) > maxa′∈AQ(b, a′)}. Thus, AL is a
current best action branch at b and AS is a set of actions
without both AL and suboptimal action branches. The
condition Q̄(b, a) > maxa′∈AQ(b, a′) is used to prune
suboptimal action branches at b, just like the branch-and-
bound pruning technique in the approach of Satia and Lave.
Then, we define

ω2(b, a) =

{
1 if a ∈ argmaxa′∈AS

Q(b, a′),
0 otherwise,

(13)

where argmaxa′∈AS
Q(b, a′) is called the current second-

best action at b. So, ω2(b, a) is a term that encourages the
exploration toward belief nodes that are reachable from b’s
second-best action branch. We use Figure 3 to provide a
direct explanation of these notions. The current second-
best action looks a bit like the action branch with the second
highest upper bound in this figure, but they actually have
nothing to do with each other.

Finally, we figure out the way of eliciting a set of promising
policies according to the lower bound. Obviously, the
nodes that are reachable from bc by following the set of
promising policies constitute of a subtree of the current
AND/OR tree. We are interested in all leaf nodes of

this subtree reachable from bc through one and only one
current second-best action branch and all other current best
action branches. Such a strategy can be well depicted by
ω1,2(bc+k):

ω1,2(bc+k) = max
i∈{0,1,...,k−1}

ω2(bc+i, ai)

k−1∏
t=0
t 6= i

ω1(bc+t, at),

(14)
where bc+i is the only belief node in which its current
second-best action branch is chosen. When ω1,2(bc+k)
equals 1, the leaf node bc+k is reachable from bc by
following one of such a set of promising policies. We
construct a new heuristic HL(b) for each leaf node using
ω1,2(bc+k) as follows:

HL(bc+k) = e(bc+k)ω1,2(bc+k)

k−1∏
t=0

ω(bt, at, zt+1).

(15)

From Equation 15, we can see that the leaf nodes being
selected to expand using HL(b) are not reachable from bc
under the current best policy. However, they are reachable
from bc under a set of promising policies that are very
similar to the current best policy since they have only one
action branch that is different from the current best action
branch. Such a heuristic HL(b) has several advantages, as
follows:

• First, a better policy according to the lower bound
would be quickly found using HL(b) only if the
improved Q-value at the second-best action branch
is greater than the Q-value at the current best action
branch.

• Second, it focuses search toward a set of promising
policies but not a single policy. The main drawback
of expanding the leaf nodes that are reachable under
a single policy is that the time of expanding is wasted
if such a single policy is not better than the current
best policy. Since HL(b) selects a set of promising
policies, suboptimal policies will be eliminated as the
depth of its leaf nodes increases. In other words,
HL(b) favors exploration toward the highest potential
policy among the set of promising policies as time
goes on.

• Third, such a set of promising policies is only a
very small subset in the set of all possible policies.
Therefore, the technique can avoid exploring a large
policy space to satisfy the requirement of real-time
limitations in online algorithms.

However, such a heuristic may still be at the risk of trapping
the search into local optima if the optimal policy is outside
of the set of promising policies and the current best policy.
Thus, our new heuristic function HL(b) might be only a
greedy heuristic and not lead to optimal behavior in the end.

3.2 Constructing a Hybrid Heuristic Strategy

Before we construct a hybrid strategy, recall the strength
and weakness of HL(b) and HU (b). HL(b) is a heuristic
that depends on the lower bound. Its advantage is to
guide search toward finding a better policy with a higher
lower bound guarantee quickly. However, HL(b) limits
its search effort to a set of promising policies. If both
the current policy and the set of promising policies are
suboptimal, the search led byHL(b) might become trapped
in a local optimum. HU (b) is a heuristic strategy that
depends on the upper bound. It favors exploration toward
an ε-optimal action branch. The ε-optimal action can be
found theoretically even if HL(b) is not used. However,
the process of finding an ε-optimal action is usually very
slow, especially in POMDP domains with large action
and observation spaces. Because their strengths are
complementary, it seems to be reasonable to combine
them for obtaining a hybrid heuristic search strategy that
leverages the advantages of both heuristics.

We suggest a way of constructing a hybrid strategy. Let L
be a set of leaf belief nodes in the AND/OR tree,

bU = argmax
b∈L

HU (b) (16)

and
bL = argmax

b∈L
HL(b). (17)

Then, our hybrid strategy selects b∗ by Equation 18:

b∗ =

{
bU if CUHU (bU) > CLHL(bL),
bL otherwise, (18)

where Ci denotes expected change value of both V (bc) and
V̄ (bc) if bi is chosen to be expanded. We use the following
formula to compute Ci in our experiments:

Ci =
Ii + 1

Ni + 1
, (19)

where i = U or L, Ii denotes the accumulative total change
value of both V (bc) and V̄ (bc) caused by expanding bi
for Ni times, and Ni represents the number of expanding
bi. Both Ii and Ni are recalculated at the beginning of
each policy-construction step. The overhead of computing
Ci is negligible in comparison to the Expand() and
UpdateAncestors() procedures. Here, bU (or bL) refers
to all belief nodes generated when CUHU > CLHL

(or otherwise), and expanding bi once means calling
Expand(bi) and UpdateAncestors(bi) once. The ones
appearing in both numerator and denominator are used to
make CU and CL equal 1 at the beginning of the online
algorithm’s run. CU and CL are variables for adjusting the
importance of HU (b) and HL(b), respectively, in heuristic
search. For example, imagine the expansions of bU (in a
period) brought no or only small change in both V (bc) and

V̄ (bc). As time goes on, the value of CU will decrease, and
the probability of selecting bU to expand will also drop.

Note that there are many other possible hybrid methods
that combine HL(b) and HU (b). Here is only one feasible
way. A further research in this direction may lead to a more
efficient hybrid method.

3.3 Leveraging the MOMDP Representation

Now, we analyze why the MOMDP representation is a
useful tool to reduce the time complexity of the operations
related with belief-state computation and value-function
computation. Reconsidering Equations 1, 2 and 4 in the
context of POMDPs, we can see that computing ba,z ,
P (z|b, a) and V (b) takes |X |2|Y|2 + 2|X ||Y|, |X |2|Y|2
and |Γ||X ||Y| multiplications, respectively. However,
by applying the MOMDP-specific versions of these
equations—Equations 9, 10 and 11—these costs can
be reduced to 2|Y|2 + 2|Y|, 2|Y|2 and |ΓY(x)||Y|
multiplications, respectively. That is, the time complexity
of computing ba,z , P (z|b, a) and V (b) can be reduced
by |X |

2|Y|2+2|X ||Y|
2|Y|2+2|Y| (= O(|X |2)), |X |

2

2 and |X ||Γ|
|ΓY(x)| times.

Since |Γ| =
∑
x∈X |ΓY(x)|, the expectation Ex∼X [|Γ|ΓY(x)]

is |X |. Thus, the MOMDP representation reduces each of
the three operations’ complexity by a factor of O(|X |2).

3.4 Convergence of FHHOP

The new online heuristic search algorithm using the hybrid
heuristics in Section 3.2 and the POMDP representation in
Section 3.3 is the FHHOP algorithm. Note that there are
substantial differences between our hybrid strategy and the
strategy included in AEMS1. AEMS1 merges V and V̄ at
the beginning of designing the action selection strategy in
its heuristic function. However, FHHOP first separates V
and V̄ in order to define two almost independent heuristic
functions, then merges the two heuristic functions with the
goal of taking full advantage of each heuristic function. As
a final note, Proposition 1 states the convergence property
of the FHHOP algorithm.
Proposition 1. Let ε > 0 and bc the current belief state.
Then, the FHHOP algorithm is guaranteed to find an ε-
optimal action for bc within finite time.

Proof. Because the FHHOP algorithm exploits the
MOMDP representation to accelerate the computation of
ba,z , P (z|b, a) and V (b) without losing accuracy, following
Theorem 2 in (Ross et al. 2008b), we only need to prove
that the probability of choosing bU to expand in the FHHOP
algorithm is always greater than 0 in this algorithm. The
following is the proof by contradiction.

Suppose that after the M th expansion of bU or bL, the
FHHOP algorithm never selects bU to expand, namely,
CUHU (bU) ≤ CLHL(bL). Thus, IU and NU will never

change, and therefore, CU and HU (bU) will never change
after the M th expansion. Let V 0(b) and V̄0(b) be b’s
initialized lower and upper bounds, and e0(b) = V̄0(b) −
V 0(b). Then, we have

HL(bL) ≤ e(bL) ≤ max
b∈B

e0(b),

and IL ≤ e0(bc). Now, let

NL > max{M,
[e0(bc) + 1] maxb∈B e0(b)

CUHU (bU)
− 1}.

Then,

CUHU (bU) >
[e0(bc) + 1] maxb∈B e0(b)

NL + 1

≥ IL + 1

NL + 1
HL(bL)

= CLHL(bL).

There is a contradiction.

4 Experimental Results

In this section, we present detailed empirical results
designed to test the performance of the FHHOP algorithm.
In all test domains, we use the blind policy and the FIB
method (Hauskrecht 2000) to initialize the lower and upper
bounds, respectively. Except where stated otherwise, all
experiments were run on an AMD dual core processor
3600+ 2.00GHz with 2GB memory. We implemented
FHHOP and AEMS2 using C++, within APPL-0.931, an
efficient POMDP solver. Results about SARSOP without
attribution appeared in Table 1 were also obtained using
APPL-0.93 in our experimental platform.

4.1 Benchmark Problems

a) Hallway: The Hallway domain (Littman et al. 1995)
models a robot navigating in an office environment. The
task of the robot in this problem is to arrive in a single
goal location. The state of the robot is comprised of
its current position and its current orientation. However,
neither attribute is fully observable. There is a set of
5 actions for movements:{Forward, Turn-left, Turn-right,
Turn-around, Stay-in-place}. The robot can partially
observe the existence of walls in four directions using four
independent, short-range, and noisy sensors.

b) Tag: The Tag problem was first described in (Pineau
et al. 2003). In this environment, a mobile robot moves in
a grid map with 29 positions with the goal of tagging an

1The software package is available from the web-page:
http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/. All test
problems in the MOMDP representation conform to the syntax
of pomdpx specified on the same web site.

opponent that intentionally moves away. Both the robot
and the opponent are located initially in independently
selected random positions. The robot can choose either to
move into one of four adjacent positions by actions {North,
South, East, West} or to tag the opponent by a “Catch”
action. The effect of the robot’s action is deterministic.
The robot can know its current position exactly, but the
opponent’s position is not observable for the robot unless
they are in the same position. The robot tries to catch the
opponent as quickly as possible to receive a good reward
since each move for the robot is expensive. In the MOMDP
representation for Tag, the fully observable state variable
x represents the robot’s position. The partially observable
state variable y is the opponent’s position.

c) RockSample: The RockSample domain was originally
presented in (Smith and Simmons 2004) and has been
frequently used in recent work to test new POMDP
algorithms (Ross et al. 2008a; Bonet and Geffner 2009;
Ong et al. 2010; Silver and Veness 2010). This domain
models a planetary robot that has to explore an area
represented as a grid map and sample rocks with a scientific
value. The robot receives a positive or negative reward
depending on whether the sampled rock has a scientific
value. RockSample n k is a family of problems in the
RockSample domain with a map size n × n and k rocks.
In these problems, the robot’s action set consists of k + 5
actions: {North, South, East, West, Sample, Check1,. . .
Checkk}. The robot always knows its own position and
rock positions in the map exactly. That is rock locations
are fixed and encoded in the map and need not be encoded
in state variables. However, whether rock m has a
scientific value is only partially observed via the action
Checkm. The Checkm action is responsible for gathering
information about rock m using a noisy long-range sensor.
The accuracy of the information gathered depends on the
distance between the robot and the rock checked. In the
MOMDP representation for this domain, the x variable is
the robot’s position, and the y variable is a Boolean that
indicates whether a particular rock has a scientific value.

d) FieldVisionRockSample: The FieldVisionRockSample
domain was initially introduced in the work on
AEMS2 (Ross and Chaib-draa 2007). This domain
can be viewed as a variant of the RockSample domain.
The only difference between them is the way of perceiving
the rocks in the environment. In contrast to perform a
check action on a specific rock to observe its state in
RockSample, in FieldVisionRockSample the states of all
rocks are observed after any action by the same noisy
sensor. Consequently, the robot can only perform 5
actions: {North, South, East, West, Sample}, and has an
observation space with size 2k for the problem with k
rocks. What is different from the RockSample domain is
that, in the MOMDP model for this task, the y variable
represents k Boolean values, each of which indicates

whether a rock has a scientific value.

e) AUV Navigation: The AUV Navigation problem first
appeared in (Ong et al. 2009). This problem models a 3-D
oceanic environment with 4 levels and a 7 × 20 grid map
at each level. An autonomous underwater vehicle (AUV)
can achieve reward by navigating from some uncertain
starting position to some goal positions and avoiding rock
formations. The AUV can perform 6 actions: {Forward,
Stay, Left, Right, Up, Down}. All of them are stochastic
due to control uncertainty or ocean currents. The AUV
is equipped with an accurate pressure senor, an accurate
compass, and a global positioning system (GPS), whose
signals can only be received when the AUV is located at the
surface level. In the MOMDP representation, the x variable
models the AUV’s depth and orientation, and the y variable
models the AUV’s horizonal location.

These benchmark problems were selected to illustrate
specific characteristics. First, the Tag problem has a
dynamic environment that changes over time even if the
robot does not take any action. Second, the RockSample
domain has a larger action space but smaller observation
space, while the other domains have smaller action spaces
but larger observation spaces. Third, the Hallway problem
does not include the mixed observation structure. Fourth,
all test problems except Hallway have large state spaces
ranging from about 103 to 105 dimensions. Thus, we
hope including problems with different features helps test
FHHOP’s overall performance thoroughly.

4.2 Performance Comparison

We applied FHHOP and existing state-of-the-art online and
offline algorithms to these benchmark problems. Table 1
compares them in terms of the following characteristic
metrics (Ross et al. 2008a): expected discounted
reward (Reward), upper bound of online time per policy-
construction step (τ) (seconds), offline time (seconds).
Looking at the comparison between our implementation
of AEMS2 and FHHOP, we can find that FHHOP obtains
higher values in terms of reward on all test problems
with online time less or equal to AEMS2’s. Furthermore,
at least on the Tag, RockSample and AUVNavigation
domains, FHHOP has achieved more than an order of
magnitude improvement compared to AEMS2. These
empirical results suggest that FHHOP tends to have a better
scalability especially in large-scale POMDP domains.

Previously published results for SARSOP, except those on
the Hallway and FieldVisionRockSample domains from
our experimental platform, are provided in the table for
comparison. Through the comparison can be found that
the FHHOP algorithm is very competitive, sometimes
even better, in terms of expected discounted reward, and
meanwhile have advantages such as a small initial offline
planning time and a small re-planning time between action

Table 1: Multi-algorithm performance comparison on several benchmark problems. See text for explanations.

Method Reward Online
Time τ

Offline
Time Method Reward Online

Time τ
Offline

Time
Hallway Tag
(|S| = 61, |X | = 1, |Y| = 61, |A| = 5, |Z| = 21) (|S| = 870, |X | = 30, |Y| = 29, |A| = 5, |Z| = 30)
AEMS2 0.50±0.01 0.20 0.02 AEMS2 -6.51±0.14 1.00 0.28
FHHOP 0.52±0.01 0.20 0.02 FHHOP -6.04±0.14 0.10 0.12
SARSOP 0.52±0.01 0.00 1.05 SARSOP(Ong) -6.03±0.12 0.00 16.50
RockSample 7 8 RockSample 11 11
(|S| = 12545, |X | = 50, |Y| = 256, |A| = 13, |Z| = 2) (|S| = 247809, |X | = 122, |Y| = 2048, |A| = 16, |Z| = 2)
AEMS2 20.66±0.29 1.00 3.34 AEMS2 21.11±0.28 10.00 56.81
FHHOP 21.45±0.30 0.10 0.51 FHHOP 21.49±0.32 1.00 7.97
POMCP(Silver) 20.71±0.21 1.00 n.v. POMCP(Silver) 20.01±0.23 1.00 n.v.
SARSOP(Ong) 21.39±0.01 0.00 810.00 SARSOP(Ong) 21.56±0.11 0.00 1369.00
FieldVisionRockSample 5 5 FieldVisionRockSample 5 7
(|S| = 801, |X | = 26, |Y| = 32, |A| = 5, |Z| = 32) (|S| = 3201, |X | = 26, |Y| = 128, |A| = 5, |Z| = 128)
AEMS2 21.02±0.32 1.00 0.10 AEMS2 22.15±0.32 1.00 0.71
FHHOP 22.56±0.33 0.20 0.02 FHHOP 24.46±0.34 0.20 0.12
SARSOP 23.20±0.33 0.00 508.40 SARSOP 29.48±0.34 0.00 1029.38
RockSample 10 10 AUV Navigation
(|S| = 102401, |X | = 101, |Y| = 1024, |A| = 15, |Z| = 2) (|S| = 13536, |X | = 96, |Y| = 141, |A| = 6, |Z| = 144)
AEMS2 20.78±0.27 10.00 11.24 AEMS2 1034.89±8.36 100.00 83.21
FHHOP 21.35±0.34 1.00 2.82 FHHOP 1059.22±8.49 10.00 16.02
SARSOP(Ong) 21.47±0.11 0.00 1589.00 SARSOP(Ong) 1019.80±9.70 0.00 409.00
n.v.=not available (Ong)= (Ong et al. 2009) (Silver)= (Silver and Veness 2010)

executions. Note that there also exists other state-of-the-art
offline algorithms (Smith and Simmons 2004; Pineau et al.
2006; Shani et al. 2007; Bonet and Geffner 2009). Here,
we only use SARSOP as a representative offline algorithm
to compare with our online algorithms.

In addition, published results on the partially observable
Monte-Carlo planning (POMCP) algorithm (Silver and
Veness 2010) for some RockSample problems are also
presented. POMCP is a promising online Monte-Carlo
algorithm, especially in large-scale POMDP problems.
From these data, we can see FHHOP exceeds POMCP
in terms of both overall running time and qualities of
generated policies on these RockSample problems.

5 Conclusion and Future Work

This paper presents FHHOP, a novel factored hybrid
heuristic online planning algorithm for large POMDPs.
To the best of our knowledge, FHHOP is the most
efficient online heuristic search algorithm, on the whole,
yet proposed amongst existing fully implemented domain-
independent online POMDP solvers. A major contribution
of this algorithm is a new hybrid heuristic search strategy
that takes full advantage of both lower and upper bounds
on the optimal value function. Its foundation stone is
a clever way of constructing a heuristic function using
the lower bound. A minor contribution of this algorithm
is to integrate MOMDP, a recently developed factored
state representation, with a cutting-edge online algorithm
and reveal its efficacy empirically. Experimental results

reported here provide a comprehensive picture of FHHOP
and state-of-the-art online and offline approaches on five
popular benchmark domains.

There are some interesting directions for future work. First,
we noticed some efficient structure learning algorithms had
been proposed in factored state MDPs (Li et al. 2008;
Diuk et al. 2009). An interesting research direction is
to extend these existing algorithms to automatically learn
the mixed observation structure in POMDPs. Second, we
believe it should be possible to use other cutting-edge data
structures, such as algebraic decision diagrams (Poupart
2005) or topology (Brunskill and Russell 2010), in FHHOP
to succinctly represent more complex structures. Third,
reparameterization (Ong et al. 2009) may give POMDPs
without the mixed observation structure a chance to benefit
from the MOMDP representation. Fourth, we could
leverage the graph structure instead of the AND/OR tree
in FHHOP to avoid redundant computations on duplicate
belief states. Finally, we would also like to investigate
further hybrid heuristic strategies for better performance.

Acknowledgments

We thank Michael L. Littman, David Hsu, Stéphane Ross,
Trey Smith and anonymous reviewers for their thoughtful
suggestions. This work was supported in part by the China
Scholarship Council, the National Science Foundation of
China under Grant Nos. 60745002, 61175057, 61105039,
and the National High-Tech Research and Development
Plan of China under Grant No. 2008AA01Z150.

References

Bellman, R. 1957. Dynamic programming. Princeton
University Press, Princeton, NJ, USA.

Bonet, B., and Geffner, H. 2009. Solving POMDPs:
RTDP-Bel vs. point-based algorithms. In Proceedings of
International Joint Conference on Artificial Intelligence
(IJCAI-2009), 1641–1646.

Brunskill, E., and Russell, S. 2010. Rapid: A reachable
anytime planner for imprecisely-sensed domains. In
Proceedings of the 26th Conference on Uncertainty in
Artificial Intelligence (UAI-2010).

Diuk, C.; Li, L.; and Leffler, B. R. 2009. The adaptive
k-meteorologists problem and its application to structure
learning and feature selection in reinforcement learning.
In Proceedings of International Conference on Machine
Learning (ICML-2009), 249–256.

Hauskrecht, M. 2000. Value-function approximations for
partially observable Markov decision processes. Journal of
Artificial Intelligence Research 13:33–94.

Hoey, J.; Von Bertoldi, A.; Poupart, P.; and Mihailidis,
A. 2007. Assisting persons with dementia during
handwashing using a partially observable Markov decision
process. In Proceedings of the 5th International
Conference on Vision Systems (ICVS-2007).

Hsu, D.; Lee, W. S.; and Rong, N. 2008. A
point-based POMDP planner for target tracking. In
Proceedings of IEEE International Conference on Robotics
and Automation (ICRA-2008), 2644–2650.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1998. Planning and acting in partially observable stochastic
domains. Artificial Intelligence 101(1-2):99–134.

Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008.
SARSOP: Efficient point-based POMDP planning by
approximating optimally reachable belief spaces. In
Proceedings of Robotics: Science and Systems (RSS-2008).

Li, L.; Littman, M. L.; and Walsh, T. J. 2008. Knows
what it knows: A framework for self-aware learning.
In Proceedings of the 25th International Conference on
Machine Learning (ICML-2008), 568–575.

Littman, M. L.; Cassandra, A. R.; and Kaelbling,
L. P. 1995. Learning policies for partially observable
environments: Scaling up. In Proceedings of International
Conference on Machine Learning (ICML-1995), 362–370.

Madani, O.; Hanks, S.; and Condon, S. 1999. On
the undecidability of probabilistic planning and infinite-
horizon partially observable Markov decision problems.
In Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI-1999), 541–548.

Ong, S. C.; Png, S. W.; Hsu, D.; and Lee, W. S. 2009.
POMDPs for robotic tasks with mixed observability. In
Proceedings of Robotics: Science and Systems (RSS-2009).

Ong, S. C.; Png, S. W.; Hsu, D.; and Lee, W. S. 2010.
Planning under uncertainty for robotic tasks with mixed
observability. International Journal of Robotics Research.

Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In
Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI-2003), 1025–1032.

Pineau, J.; Gordon, G.; and Thrun, S. 2006. Anytime
point-based approximations for large POMDPs. Journal
of Artificial Intelligence Research 27:335–380.

Poupart, P. 2005. Exploiting structure to efficiently solve
large scale POMDPs. Ph.D. Dissertation, University of
Toronto.

Ross, S., and Chaib-draa, B. 2007. AEMS: An anytime
online search algorithm for approximate policy refinement
in large POMDPs. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI-2007),
2592–2598.

Ross, S.; Pineau, J.; Paquet, S.; and Chaib-Draa, B. 2008a.
Online planning algorithms for POMDPs. Journal of
Artificial Intelligence Research 32:663–704.

Ross, S.; Pineau, J.; Paquet, S.; and Chaib-Draa, B. 2008b.
Theoretical analysis of heuristic search methods for online
POMDPs. In Proceedings of the 22nd Annual Conference
on Neural Information Processing Systems (NIPS-2008),
1233–1240.

Satia, J. K., and Lave, R. E. 1973. Markovian
decision processes with probabilitic observation of state.
Management Science 20(1):1–13.

Shani, G.; Brafman, R. I.; and Shimony, S. E. 2007.
Forward search value iteration for POMDPs. In
Proceedings of the 22nd International Joint Conference on
Artificial Intelligence (IJCAI-2007), 2619–2624.

Silver, D., and Veness, J. 2010. Monte-Carlo planning
in large POMDPs. In Proceedings of the 24th Annual
Conference on Neural Information Processing Systems
(NIPS-2010), 2164–2172.

Smallwood, R. D., and Sondik, E. J. 1973. The optimal
control of partially observable Markov processes over a
finite horizon. Operations Research 21(5):1071–1088.

Smith, T., and Simmons, R. 2004. Heuristic search
value iteration for POMDPs. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence (UAI-
2004), 520–527.

Washington, R. 1997. BI-POMDP: bounded, incremental
partially observable Markov model planning. In
Proceedings of the 4th European Conference on Planning,
440–451.

