Nested Markov Properties for Acyclic Directed Mixed Graphs

Thomas S. Richardson thomasr@u.washington.edu James M. Robins robins@hsph.harvard.edu Ilya Shpitser ishpitse@hsph.harvard.edu

Abstract

Directed acyclic graph (DAG) models may be characterized in four different ways: via a factorization, the dseparation criterion, the moralization criterion, and the local Markov property. As pointed out by Robins [2, 1], Verma and Pearl [6], and Tian and Pearl [5], marginals of DAG models also imply equality constraints that are not conditional independences. The well-known 'Verma constraint' is an example. Constraints of this type were used for testing edges [3], and an efficient variable elimination scheme [4]. Using acyclic directed mixed graphs (ADMGs) we provide a graphical characterization of the constraints given in [5] via a nested Markov property that uses a 'fixing' transformation on graphs. We give four characterizations of our nested model that are analogous to those given for DAGs. We show that marginal distributions of DAG models obey this property.

References

- James M. Robins. Testing and estimation of direct effects by reparameterizing directed acyclic graphs with structural nested models. In C. Glymour and G. Cooper, editors, *Computation, Causation, and Discovery*, pages 349–405. MIT Press, Cambridge, MA, 1999.
- [2] J.M. Robins. A new approach to causal inference in mortality studies with sustained exposure periods – application to control of the healthy worker survivor effect. *Mathematical Modeling*, 7:1393–1512, 1986.

- [3] Ilya Shpitser, Thomas S. Richardson, and James M. Robins. Testing edges by truncations. In *International Joint Conference on Artificial Intelligence*, volume 21, pages 1957–1963, 2009.
- [4] Ilya Shpitser, Thomas S. Richardson, and James M. Robins. An efficient algorithm for computing interventional distributions in latent variable causal models. In 27th Conference on Uncertainty in Artificial Intelligence (UAI-11). AUAI Press, 2011.
- [5] Jin Tian and Judea Pearl. On the testable implications of causal models with hidden variables. In *Proceedings* of UAI-02, pages 519–527, 2002.
- [6] T. S. Verma and Judea Pearl. Equivalence and synthesis of causal models. Technical Report R-150, Department of Computer Science, University of California, Los Angeles, 1990.