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Abstract

Learning a Bayesian network structure from
data is an NP-hard problem and thus exact
algorithms are feasible only for small data
sets. Therefore, network structures for larger
networks are usually learned with various
heuristics. Another approach to scaling up
the structure learning is local learning. In
local learning, the modeler has one or more
target variables that are of special interest;
he wants to learn the structure near the tar-
get variables and is not interested in the rest
of the variables. In this paper, we present
a score-based local learning algorithm called
SLL. We conjecture that our algorithm is the-
oretically sound in the sense that it is optimal
in the limit of large sample size. Empirical
results suggest that SLL is competitive when
compared to the constraint-based HITON al-
gorithm. We also study the prospects of con-
structing the network structure for the whole
node set based on local results by present-
ing two algorithms and comparing them to
several heuristics.

1 INTRODUCTION

A Bayesian network is a representation of a joint prob-
ability distribution. It consists of two parts: the struc-
ture and the parameters. The structure of a Bayesian
network is represented by a directed acyclic graph
(DAG) that expresses the conditional independence re-
lations among variables and the parameters determine
the local conditional distributions for each variable.

Structure learning in Bayesian networks, that is, find-
ing a DAG that fits to the data, has drawn lots of
interest in recent years. There are two rather dis-
tinct approaches to structure learning. In score-based
approach (Cooper and Herskovits, 1992; Heckerman

et al., 1995) each DAG gets a score based on how well
it fits to the data and the goal is to find the DAG
that maximizes the score. On the other hand, the
constraint-based approach (Pearl, 2000; Spirtes et al.,
2000) is based on testing conditional independencies
among variables and constructing a DAG that repre-
sents these relations. Both approaches are compatible
in the sense that (under some general assumptions),
no matter which approach one uses, exact algorithms
converge to the same DAG when the number of samples
tends to infinity.

Structure learning in Bayesian networks is NP-hard
(Chickering, 1996; Chickering et al., 2004). Due to the
NP-hardness of the problem, it is unlikely that there are
exact algorithms that run in polynomial time. Indeed,
the fastest exact algorithms (Silander and Myllymäki,
2006) run in exponential time. Although there have
been several attempts to scale up the exact algorithms
(de Campos et al., 2009; Parviainen and Koivisto, 2009;
Jaakkola et al., 2010; Cussens, 2011; Malone et al.,
2011), these methods quickly become infeasible with
larger datasets.

As the exact algorithms do not work for large data
sets, one often has to resort to heuristics. A common
strategy is to use different variants of greedy search. An
alternative approach to the problem is local learning.
When one has a large data set, often it is a case that
all variables are not equally interesting. One might
have one or a handful of target variables and the goal
is to learn the structure only in the vicinity of the
targets. An example for a problem where local learning
is feasible is prediction. If we know the Markov blanket
of a target variable, that is, its parents, its children
and the parents of its children, the remaining variables
do not give any more information. Thus, if it is known
that we are going to predict the values of only a handful
of variables, we can just learn their Markov blankets
and ignore the structure of the rest of the network.

Local learning is not a new approach. There have
been several studies especially on constraint-based lo-



cal learning (Nägele et al., 2007; Aliferis et al., 2010a,b).
These studies have shown that local learning can be a
powerful tool in practice. In this paper we study the
prospects of the score-based local learning of Bayesian
network structures. We present a score-based local
learning algorithm (SLL) that is a variant of the gener-
alized local learning (GLL) framework (Aliferis et al.,
2010a). Assuming a consistent scoring criterion is used,
we conjecture that our algorithm is theoretically sound
in the same sense as greedy equivalence search (GES)
(Chickering, 2002) and HITON (Aliferis et al., 2010a),
that is, it is guaranteed to find the true Markov blan-
ket of the target node when the sample size tends to
infinity.

Optimality guarantees in the limit or lack thereof do not
tell anything about results with finite sample size. Thus,
we conducted experiments and compared our algorithm
to other heuristics. Based on the experiments, we found
our algorithm promising.

2 PRELIMINARIES

2.1 BAYESIAN NETWORKS

The structure of a Bayesian network is represented by
a directed acyclic graph (DAG). Formally, a DAG is a
pair (N,A) where N is the node set and A is the arc set.
If there is an arc from u to v, that is, uv ∈ A, we say
that u is a parent of v and v is a child of u. If v is either
a parent or a child of u, they are said to be neighbors.
Further, if there is a directed path from u to v in A
then v is a descendant of u. Nodes v and u are are said
to be spouses of each other if they have a common child
and there is no arc between v and u. We denote the set
of the parents of a node v in A by Av. Further, we use
HA(v) and SA(v) to denote the sets of the neighbors
and spouses of v in A, respectively. When the node set
is clear from the context, we identify a DAG by its arc
set A. The cardinality of N is denoted by n.

Each node v corresponds to a random variable and the
DAG expresses conditional independence assumptions
between variables. Random variables u and v are said
to be conditionally independent in distribution p given
a set S of random variables if p(u, v|S) = p(u|S)p(v|S).
A DAG contains or represents a joint distribution of
the random variables if the joint distribution satisfies
the local Markov condition, that is, every variable is
conditionally independent of its non-descendants given
its parents. Such a distribution can be specified using
local conditional probability distributions (CPD) which
specify the distribution of a random variable given its
parents Av. CPDs are usually taken from a parame-
terized class of probability distributions, like discrete
or Gaussian distributions. Thus, the CPD of variable

v is determined by its parameters θv; the type and
the number of parameters is specified by the particular
class of probability distributions. The parameters of
a Bayesian network are denoted by θ which consists
of the parameters of each CPD. Finally, a Bayesian
network is a pair (A, θ).

A distribution p is said to be faithful to a DAG A if all
conditional independencies in p are implied by A. We
say that a DAG Ap is a perfect map of a distribution
p if Ap contains p and p is faithful to Ap. By p[Z] we
denote the marginal distribution of p on set Z.

The conditional independencies implied by a DAG can
be extracted using a d-separation criterion; this is
equivalent to local Markov condition. The skeleton
of a DAG A is an undirected graph that is obtained
by replacing all directed arcs uv ∈ A with undirected
edges between u and v. A path in a DAG is a cycle-free
sequence of edges in the corresponding skeleton. A
node v is a head-to-head node along a path if there are
two consecutive arcs uv and wv on that path. Nodes v
and u are d-connected by nodes Z along a path from v
to u if every head-to-head node along the path is in Z
or has a descendant in Z and none of the other nodes
along the path is in Z. Nodes v and u are d-separated
by nodes Z if they are not d-connected by Z along any
path from v to u. If Ap is a perfect map of p then v
and u are conditionally independent give Z in p if and
only if v and u are d-separated by Z in Ap. If v and
u are conditionally independent in p given Z we use
notation v ⊥⊥p u|Z.

The Markov blanket of node v is the smallest node set
S such that v is conditionally independent of all other
nodes given S. The Markov blanket of node v consists
of the parents of v, the children of v, and the spouses
of v.

Nodes s, t, and u form a v-structure in a DAG if s
and t are spouses and u is their common child. A
v-structure is denoted by (s, u, t). Two DAGs are
said to be Markov equivalent if they can contain the
same set of distributions, or equivalently, imply the
same set of conditional independence statements. It
can be shown that two DAGs are Markov equivalent
if and only if they have the same skeleton and same
v-structures (Verma and Pearl, 1990).

2.2 CONSISTENT SCORING CRITERION

Score-based structure learning methods in Bayesian
networks assign a score to each DAG based on how well
the DAG fits to the data according to some statistical
principle. A function f(A,D) that assigns the score
to a DAG A based on the data D is called a scoring
criterion. A scoring criterion is decomposable if the
score of a DAG is a sum of local scores that only depend



on a node and its parents. A local score function is
denoted by f(v,Av, Dv, DAv ), where Dv and DAv are
the data on a node v and a node set Av, respectively.
Now, a decomposable score for a DAG A can be written
as

f(A,D) =
∑
v∈N

f(v,Av, Dv, DAv ).

Let the data D consists of m independent and identi-
cally distributed (i.i.d.) samples from a distribution p
on N . A scoring criterion f is said to be consistent if
in the limit as m grows, the following two properties
hold:

1. If A′ contains p and A does not, then f(A′, D) >
f(A,D).

2. If A′ and A both contain p, and A′ has fewer
parameters, then f(A′, D) > f(A,D).

A related and in our case more useful property is local
consistency. Let A be any DAG and A′ be the DAG
that results from adding the arc uv to A. A scoring
criterion f is said to be locally consistent if in the limit
as m grows, the following two properties hold for all u
and v:

1. If u 6⊥⊥p v|Av, then f(A′, D) > f(A,D).

2. If u ⊥⊥p v|Av, then f(A′, D) < f(A,D).

Intuitively, adding an arc that eliminates an inde-
pendence constraint that does not hold in the data-
generating distribution increases the score, and adding
an arc that does not eliminate such a constraint de-
creases the score.

A scoring criterion is said to be score equivalent if two
Markov equivalent DAGs always have the same score.
With a score equivalent scoring criterion one can learn
a structure of a Bayesian network up to an equivalence
class but cannot distinguish the DAGs inside the class.

For example, commonly used BDeu score is locally con-
sistent (Chickering, 2002) and score equivalent (Heck-
erman et al., 1995).

2.3 STRUCTURE DISCOVERY PROBLEM

The problem of structure discovery in Bayesian net-
works is to find, given data D, a DAG that in some
sense is the best representation of the data. We call
this global learning. In score-based approach the good-
ness of a DAG is measured by the score f(A,D). In
constraint-based approach one would like to find a DAG
that is a perfect map of the data-generating distribu-
tion.

In the local learning problem the output is the neighbor
and/or spouse sets for a target node, not a DAG. The
goodness of the result can be measured by comparing
learned neighbor and spouse sets to the corresponding
sets in the Ap, the perfect map of the data-generating
distribution. Note that this comparison can be made
only if Ap is known.

3 LOCAL LEARNING
ALGORITHM

In this section, we present a score-based local learning
algorithm algorithm (SLL) that finds the Markov blan-
ket of a given target node. SLL works in two phases:
First, one learns the neighbors of the target and then
the rest of the Markov blanket. SLL is a score-based
variant of the constraint-based local learning algorithm
by Aliferis et al. (2010a,b); the main difference be-
tween SLL and the algorithm by Aliferis et al. is that
they use independence tests to identify the neighbors
and spouses whereas we recognize them from optimal
Bayesian networks. In this section, we also analyze the
behavior of the algorithm in the limit. We also consider
constructing a Bayesian network for the whole node
set using the local structures that have been found.

3.1 FINDING PARENTS AND CHILDREN

We start by learning the potential neighbors of a target
node. The idea of the algorithm is as follows. The
input of the algorithm consists of the data D on the
node set N and a target node t ∈ N . During the ex-
ecution of the algorithm, we update two sets: Set O
consists of the nodes that have not been analyzed yet
and set H consists of nodes that are currently consid-
ered as potential neighbors of t. In the beginning, set
H is empty and O contains all nodes but t. After the
initialization, nodes in O are considered one by one:
One learns an optimal DAG on the target, the current
set of its potential neighbors and the new node under
consideration. For the structure learning we use a sub-
routine OptimalNetwork which returns the highest
scoring DAG on a given node set. The subroutine can
use the dynamic programming algorithm of Silander
and Myllymäki (2006) or any other exact algorithm.
After an optimal DAG is found, the nodes that are the
neighbors of t in that particular DAG form a new set
of potential neighbors and the rest of the nodes are
discarded. After all nodes are either discarded or in
the set of potential neighbors, the set of the potential
neighbors is returned.

The pseudocode of the above procedure is shown in
Algorithm 1.

Next, we will show that if the data was generated from



Algorithm 1 FindPotentialNeighbors
Input: Data D on node set N , a target node t ∈ N .
Output: The potential neighbors of t.
1: Initialization: O ← N \ {t}, H(t)← ∅
2: while O is nonempty do
3: Choose v ∈ O
4: O ← O \ {v}
5: Z ← {t, v} ∪H(t)
6: A← OptimalNetwork(Z,DZ)
7: H(t)← HA(t)
8: end while
9: return H(t)

a distribution p, Algorithm 1 is guaranteed to find all
correct neighbors, that is, all nodes that are neighbors
of t in Ap will be included in H(t) in the limit. The
guarantee holds under the following assumptions.
Assumption 1. The data D consists of i.i.d. samples
from a distribution p that is faithful to a DAG Ap.
Assumption 2. The procedure OptimalNetwork
uses a locally consistent and score equivalent scoring
criterion.
Lemma 3. Let HAp(t) be the neighbors of the target
t in Ap. When Assumptions 1 and 2 hold, Algorithm 1
will return a set H(t) such that HAp(t) ⊆ H(t).

Proof. If nodes t and v are not conditionally indepen-
dent in p given any set X ⊆ N \ {t, v}, then any
Bayesian network that contains p must have an arc
between t and v. Thus, if we have two networks A
and A′ on Y ∪{t, v} such that A′ has an arc between t
and v and A has not and otherwise they are the same,
then by the local consistency, A′ has higher score than
A. Thus, the highest scoring network must have an
arc between t and v. As the above reasoning applies
to every set Y ⊆ N \ {t, v}, v will be in H(t) when
Algorithm 1 stops.

Based on the previous lemma we know that if a node v
is a neighbor of a node t in Ap, then it will be in H(t).
However, we have no guarantees that no nodes that are
non-adjacent to t in Ap are included in H(t). Indeed,
Aliferis et al. (2010a) point out that if we have a perfect
map Ap described in Figure 1 an extra node might be
added to H(t). To see this, assume that t is our target
and its true neighbors u and s are in H(t) and w has
been discarded. Then t 6⊥⊥p v|X for all X ⊆ {u, s} and
thus, by local consistency, adding an arc between t and
v always increases the score and therefore it is always
included in the optimal DAG.

The neighbor relation is symmetric: if v is a child of t
then t is a parent of v. This allows us to try to remove

Figure 1: A DAG where non-adjacent nodes t and v
are not conditionally independent given any subset of
the neighbors of t.

extra nodes from H(t) using a simple symmetry cor-
rection in similar fashion as Aliferis et al. (2010a): t
and v are neighbors in Ap only if both v is a potential
neighbor of t and t is a potential neighbor of v. Algo-
rithm 2 uses symmetry correction to find the neighbors
of a target node.

Algorithm 2 FindNeighbors
Input: Data D on node set N , a target node t ∈ N .
Output: The neighbors of t.
1: H∗(t)← FindPotentialNeighbors(D, t)
2: for all v ∈ H∗(t) do
3: H(v)← FindPotentialNeighbors(D, v)
4: if t /∈ H(v) then
5: H∗(t)← H∗(t) \ {v}
6: end if
7: end for
8: return H∗(t)

To analyze the optimality of the algorithm, we use
the below lemma which shows that if t and v are not
neighbors in Ap but they are dependent given every
subset of the neighbors of t then they are conditionally
independent given some subset of the neighbors of v.
Formally, let EAp(t) be the set consisting of the nodes
v ∈ N \ {t} such that t 6⊥⊥p v|X for all X ⊆ HAp(t).
Lemma 4 (Aliferis et al. (2010a), Lemma 2). If v ∈
EAp(t) \HAp(t), then t /∈ EAp(v) \HAp(v).

However, it is not clear whether the output of Algo-
rithm 1 is a subset of the the nodes that are condition-
ally dependent on t given any subset of the neighbors
of t. As we are not aware of any counterexamples, we
conjecture the follows.
Conjecture 5. Let H(t) be the output of Algorithm 1.
Then H(t) ⊆ EAp(t).

The next lemma shows the optimality of Algorithm 2
in the limit assuming Conjecture 5 holds.
Lemma 6. Let HAp(t) be the neighbors of the target
t in Ap. When Assumptions 1 and 2 and Conjecture 5



hold, Algorithm 2 will return a set H∗(t) such that
H∗(t) = HAp(t).

Proof. First, let us prove that HAp(t) ⊆ H∗(t). By
Lemma 3, HAp(t) ⊆ H(t) and HAp(v) ⊆ H(v) for all
v. Thus, if v ∈ HAp(t) then v ∈ H(t) and t ∈ H(v).

Let us prove that H∗(t) ⊆ HAp(t). By Conjecture 5
we observe that H(t) ⊆ EAp(t). Suppose that we have
nodes t, v ∈ N such that v ∈ H(t) and t ⊥⊥p v|X
for some X ⊆ N \ {t, v}. Therefore, it must be that
v ∈ EAp(t) and v /∈ HAp(t). Thus, v ∈ EAp(t)\HAp(t).
By Lemma 4, we have that t /∈ EAp(v) \HAp(v). By
symmetry, t /∈ HAp(v) and thus t /∈ EAp(v). Therefore,
t /∈ H(v) and Algorithm 2 does not include t and v as
neighbors of each other.

3.2 FINDING THE MARKOV BLANKET

Learning the spouses of the target t is quite similar to
the learning the neighbors of t. In addition to the data
D and target node t we take as input the set H∗(t),
learned by Algorithm 2, consisting of the neighbors of t.
The set S(t) will consist the potential spouses of t. As
all potential spouses are neighbors of a neighbor of t,
we need to go through only a subset of all nodes. The
set of neighbors H∗(t) is fixed and we keep updating
the set S(t). All nodes that have a common child with
t and are not neighbors of t are kept in and the rest
are discarded. Again, the nodes that remain in S(t)
once all nodes have been considered, are considered
potential spouses of t.

The procedure is summarized in Algorithm 3.

Algorithm 3 FindPotentialSpouses
Input: Data D on node set N , a target node t ∈ N ,

neighbors of the target H∗(t).
Output: Potential spouses of t.
1: Find set H ′: the neighbors of the nodes in H∗(t).
2: Initialization: O ← H ′ \ (H∗(t) ∪ {t}), S(t)← ∅
3: while O is nonempty do
4: Choose v ∈ O
5: O ← O \ {v}
6: Z ← {t, v} ∪H∗(t) ∪ S(t)
7: A←OptimalNetwork(Z,DZ)
8: S(t)← SA(t)
9: end while

10: return S(t)

The following lemma shows that the set S(t) will not
contain any nodes that are not spouses of the target t
in Ap.
Lemma 7. Let SAp(t) be the spouses of the target t in
Ap. When Assumptions 1 and 2 and Conjecture 5 hold,

Algorithm 3 will return a set S(t) such that S(t) ⊆
SAp(t).

Proof. Let t be the target, u its neighbor and v a
neighbor of u. A spouse v is added to S(t) only when
there is a v-structure (t, u, v) in A.

Suppose that there is no v-structure (t, u, v) in Ap.
Then t 6⊥⊥p v|X for all X ⊆ N \ {t, u, v}. Now, if
a DAG A has the v-structure (t, u, v) then At does
not contain u and thus t 6⊥⊥p v|At. This means that,
by local consistency, adding an arc vt to A increases
the score. Symmetrically, Av does not contain u and
by local consistency, adding an arc tv increase the
score. Since it is always possible to add at least one
of these arcs without introducing a cycle, A cannot be
the optimal graph.

Lemma 7 does not guarantee that all spouses are found
(in the limit) using Algorithm 3. Indeed, Figure 1 shows
an example where Algorithm 3 leaves one spouse out.
Let t be our target. Then, its neighbors are s and u.
Consider learning an optimal DAG on {s, t, u, v}. We
notice that t and v are not conditionally independent
given any subset of {s, u} and thus by local consistency
the optimal network must contain an arc between t
and v. Therefore, v cannot be part of a v-structure
and is discarded. However, in the original graph v is
involved in a v-structure (t, s, v). To find spouses, we
use Algorithm 4.

Algorithm 4 FindSpouses
Input: Data D on node set N , a target node t ∈ N ,

neighbors of the target H∗(t), neighbors of the
neighbors of the target H∗(v) for all v ∈ H∗(t).

Output: The spouses of t.
1: S∗(t)← FindPotentialSpouses(D, t,H∗(t))
2: for all v ∈ N \ ({t} ∪H∗(t)) do
3: S(v)← FindPotentialSpouses(D, v,H∗(v))
4: if t ∈ S(v) then
5: S∗(t)← S∗(t) ∪ {v}
6: end if
7: end for
8: return S∗(t)

It is not known whether Algorithm 4 is guaranteed to
find all spouses in the limit. Finding a counterexample
seems difficult and thus we conjecture as follows.
Conjecture 8. Let SAp(t) be the spouses of the target
t in Ap. When Assumptions 1 and 2 hold, Algorithm 4
will return a set S∗(t) such that S∗(t) = SAp(t).

Once we have found the neighbors H∗(t) and spouses
S∗(t) of a target node t, the Markov blanket is simply



H∗(t) ∪ S∗(t). The following conjecture that holds if
Conjectures 5 and 8 hold summarizes the theoretical
guarantees.
Conjecture 9. When Assumptions 1 and 2 hold, the
local learning algorithm is optimal in the limit, that
is, when the sample size m approaches infinity the
algorithm always finds the correct Markov blanket for
every target.

3.3 TIME AND SPACE REQUIREMENT

In both Algorithm 1 and 3, the while loop is executed
at most n− 1 times. The time and space requirement
inside the loop is dominated by the procedure Opti-
malNetwork. On a node set Z it runs in O(|Z|22|Z|)
time and O(|Z|2|Z|) space, where in the worst case
|Z| = O(n). Thus, these algorithms have a worst
case time requirement O(n32n) and space requirement
O(n2n). In practice, however, the networks are often
relatively sparse and the running times are significantly
lower than in the worst case; see the experiments. Al-
gorithms 2 and 4 call Algorithms 1 and 3 at most n
times, respectively. Thus, the total time requirement
is at most O(n42n).

The above algorithms were presented for computing
the Markov blanket for a single target. If one computes
Markov blankets for all nodes, one can store and reuse
the the potential neighbor and spouse sets. Thus, in
the worst case the Markov blanket for all nodes can be
found in O(n42n) time.

3.4 FROM LOCAL TO GLOBAL

Above we have learned Markov blankets of target nodes.
Next, we introduce two methods to construct a DAG
on the whole node set based on the local results.

The first method uses a constraint-based approach. As
mentioned in the previous section, when computing the
local neighbor sets we do not need to do the symmetry
correction separately for each node. Instead, we can
first find the potential neighbors for each node and then
get the actual neighbors and build the skeleton using
AND-rule; an edge between u and v is added to the
skeleton only if both u and v are potential neighbors of
each other. Similar way we can also skip the separate
symmetry checks when finding the spouses of each node.
As a result, we can use the procedure SLL+C described
in Algorithm 5 to construct a DAG.

On lines 1–4 of the Algorithm 5 the skeleton E is built
and on lines 5–19 the v-structures are directed; this
specifies the Markov equivalence class of the DAG. To
direct the rest of the arcs which is done on line 20 we
can use the rules listed in Pearl (2000). Note that in
practice there may be conflicts between v-structures.

Algorithm 5 SLL+C
Input: Data D on node set N .
Output: Directed acyclic graph A.
1: for all v ∈ N do
2: H(v)← FindPotentialNeighbors(D, v)
3: end for
4: E ← {{u, v} | v ∈ H(u) and u ∈ H(v)}
5: for all v ∈ N do
6: H∗(v)← {u | {v, u} ∈ E}
7: S(v)← FindPotentialSpouses(D, v,H∗(v))
8: end for
9: A← ∅

10: for all v ∈ N do
11: for all u ∈ S(v) do
12: for all w is a common child of v and u do
13: if possible without introducing cycles then
14: remove {v, w} and {u,w} from E
15: add vw and uw to A
16: end if
17: end for
18: end for
19: end for
20: direct the rest of the edges without introducing

cycles or (if possible) additional v-structures
21: return A

With a finite sample size, one v-structure could, for
example, force an arc to be oriented from u to v and
another v-structure from v to u.

Another way to construct a DAG from the local re-
sults is to use a heuristic such as greedy search with
some constraints imposed by the local neighbors. As
we will see later in the experiments section, this often
leads to a structure with better score compared to the
constraint-based approach. Another advantage is that
there is no need to find the spouses of the nodes, which
is often the more computationally intensive phase in
SLL. Algorithm 6 describes SSL+G procedure which
uses OR-rule to build a skeleton E of potential edges
from the local neighbor sets. Then it calls a greedy
search as a subroutine, which may only add an arc
if the corresponding edge is present in the skeleton.
This approach is similar to the MMHC algorithm by
Tsamardinos et al. (2006a) and comes with no correct-
ness guarantees in the limit.

4 EXPERIMENTS

We implemented the SLL algorithm as well as both
SLL+C and SLL+G algorithms in C++. As Optimal-
Network subroutine we used the dynamic program-
ming algorithm by Silander and Myllymäki (2006) with
fallback to greedy equivalence search (GES) (Chicker-
ing, 2002) if the number of nodes in the input is larger



Algorithm 6 SLL+G
Input: Data D on node set N .
Output: Directed acyclic graph A.
1: for all v ∈ N do
2: H(v)← FindPotentialNeighbors(D, v)
3: end for
4: E ← {{u, v} | v ∈ H(u) or u ∈ H(v)}
5: A← GreedySearch(D,E)
6: return A

than 20. In the dynamic programming we limited
the maximum in-degree of a node to 5. The imple-
mentation is available at http://www.cs.helsinki.
fi/u/tzniinim/uai2012/. These algorithms were
compared against several state-of-the-art algorithms,
namely the constraint-based HITON (Aliferis et al.,
2010a) for local structure discovery and greedy search
(GS), greedy equivalence search (GES) and the max-
min hill-climbing (MMHC) (Tsamardinos et al., 2006a)
for global structure discovery. The association test used
by HITON and MMHC was the built in Assoc function
of the implementation, that is, G2 test according to
Aliferis et al. (2010a) and Tsamardinos et al. (2006a).
For HITON the maximum conditioning set size was
set to 5. BDeu prior with equivalent sample size 1 was
used in all algorithms when applicable.

In our experiments we used discrete data generated
from real world Bayesian networks. We chose a subset
of (smaller) data sets which were used by Tsamardinos
et al. (2006a) and are freely available online1. These
are listed in Table 1. Some of the networks have been
generated by tiling 3, 5 or 10 copies of the original
network using a method by Tsamardinos et al. (2006b).
For each network we had 10 independently generated
random datasets containing 500, 1000 and 5000 i.i.d.
samples.

To accommodate to limited space we chose a repre-
sentative sample of four of the networks for which we
have figures: Alarm5, Child10, Insurance5, and
Hailfinder. The figures for the rest of the networks
are available as an online appendix.

4.1 LOCAL LEARNING

In the local learning experiments the goal was to learn
both the neighbor sets and the Markov blankets for
all nodes. We compared SLL to the constraint-based
HITON from Causal Explorer toolkit2 by Aliferis et al.
(2011).

For both the neighbor sets and the Markov blankets
1http://www.dsl-lab.org/supplements/mmhc_paper/

mmhc_index.html
2http://www.dsl-lab.org/causal_explorer/

max
Num in/out domain

Network vars -degree size
Alarm 37 4 / 5 2–4
Alarm3 111 4 / 5 2–4
Alarm5 185 4 / 6 2–4
Barley 48 4 / 5 2–67
Child 20 2 / 7 2–6
Child3 60 3 / 7 2–6
Child5 100 2 / 7 2–6
Child10 200 2 / 7 2–6
Hailfinder 56 4 / 16 2–11
Insurance 27 3 / 7 2–5
Insurance3 81 4 / 7 2–5
Insurance5 135 5 / 8 2–5

Table 1: Bayesian networks used in the experiments.
Information from Tsamardinos et al. (2006a).

we measured the local Hamming distance between the
learned set of nodes and the true set of nodes. The
Hamming distance of two sets A and B is the number
of elements which are contained in only one of the sets,
that is, |A\B|+|B\A|. For each data set we computed
the Sum of Local Hamming Distances over all possible
target nodes, call it SLHD.

Figure 2 shows the average SLHDs as a function of
the size of the data set for learning the neighbor nodes.
As expected, the accuracy of the learned neighbor set
improves as the number of data samples increases. In
most of the cases SLL beats HITON. The average
SLHDs for learning the Markov blankets are shown in
Figure 3. The results are similar to those for neighbor
nodes.

4.2 GLOBAL LEARNING

In the global learning experiments the goal was to learn
the entire structure (DAG) of the underlying Bayesian
network. We considered both SLL+C and SLL+G
heuristics. As the greedy search algorithm we used the
steepest ascent hill-climbing with a TABU list of the
last 100 structures and a stopping criterion of 15 steps
without improvement in the maximum score. These
parameters were chosen to be same as in the MMHC
and greedy search implementation by Tsamardinos et al.
(2006a). We compared our algorithms to greedy search
(GS) and max-min hill-climbing (MMHC) from Causal
Explorer toolkit as well as greedy equivalent search
(GES) from TETRAD software3.

Some of the algorithms return a DAG but the others
return a PDAG, a partially directed acyclic graph which

3http://www.phil.cmu.edu/projects/tetrad/
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Figure 2: Average SLHD (Sum of Local Hamming Distances) between the returned neighbor sets (parents and
children) and the true neighbor sets for different data sizes (500, 1000 and 5000 samples). Standard deviations
are shown as vertical bars.
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Figure 3: Average SLHD between the returned Markov blankets and the true Markov blankets.

corresponds to a Markov equivalence class. Compared
to a DAG, in the corresponding PDAG the edges which
are not oriented the same way in all members of the
class are undirected. Since the DAGs belonging to a
same equivalence class cannot be distinguished using
score equivalent scores, we converted all returned DAGs
to PDAGs and compared the PDAGs. If the algorithm
failed (i.e. did not return a valid DAG) the run was
ignored. This only affected GES, which failed to return
an acyclic graph in several runs.

We used two measures the evaluate the goodness of the
PDAGs returned by the algorithms: normalized BDeu
score and Structural Hamming Distance from the true
structure. The normalized BDeu score was obtained by
computing the BDeu score with equivalent sample size
1 for a DAG extension of the PDAG and dividing the
result by the score of the true structure; the lower the
normalized score, the better the structure fits to the
data. Average normalized scores are shown in Figure 4.
The basic greedy search seems to do surprisingly well,
even compared to the GES. For some networks SLL+G
works better than MMHC, for other it is the other way
around. SLL+C loses to the other methods in most of
the cases.

The Structural Hamming Distance (SHD) between two
PDAGs is defined as the number of edges which are
missing/extra or of wrong type (reversed or directed in
one PDAG and undirected in the other). We measured
the distances between the resulting PDAGs and the

true structures. Figure 5 shows the average SHDs.
Compared to the observations for scores, here SLL+C
performs clearly better and a basic greedy search much
worse.

4.3 TIME CONSUMPTION

Figure 6 shows the average running times. For local
learning the times include learning both the neighbors
and the Markov blankets for all nodes. As in SLL+C
the most of the time is spent in local learning part
which is the same as running the SLL algorithm for all
nodes, these times are combined. The times for HITON
are not directly comparable to SLL since it does the
symmetry correction for each node separately. In spite
of this extra work, HITON is often not any slower than
SLL. Also for global learning the rival algorithms are
usually faster than SLL+G and SLL+C.

5 DISCUSSION

In this paper we have studied prospects of score-based
local learning. We have conjectured that the score-
based local learning provides same the theoretical guar-
antees as greedy equivalence search (GES) (Chickering,
2002) and constraint-based local learning (Aliferis et al.,
2010a). A natural avenue for future research is to prove
these guarantees or lack thereof.

Our experiments suggest that our method provides



500 1000 5000
0.95

1

1.05
a
v
e
ra

g
e
 n

o
rm

a
liz

e
d
 B

D
e
u
−

s
c
o
re Alarm5

500 1000 5000
0.98

0.99

1

1.01

1.02
Child10

500 1000 5000
0.9

0.95

1

1.05

1.1
Insurance5

500 1000 5000

0.65

0.7

0.75

0.8
Hailfinder

 

 

GS (Causal Explorer)

GES (TETRAD)

MMHC (Causal Explorer)

SLL+G

SLL+C
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Figure 5: Average SHD (Structural Hamming Distance) between the returned structures and the true structure.
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Figure 6: Average running times for the algorithms.

a competitive alternative for constraint-based local
learning. Our algorithm seems to often find local neigh-
borhoods more accurately than the competitor. How-
ever, as a downside our algorithm usually consumes
significantly more time. We hope that our algorithm
could bridge the gap between exact algorithms and
constraint-based local learning by providing a way to
trade off between accuracy and scalability. The local-
to-global approach seem to perform less well compared
to various other heuristics. However, in some data sets
local-to-global algorithms outperformed all benchmarks
in structural Hamming distance especially when there
was lots of data. This suggests that with further devel-
opment, score-based local-to-global heuristic could be
competitive in certain types of networks.
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